Quiz on Asymptotic Notation and Recurrence Relations

$n \log n \leq O(n^{1.5})$

$\sum_{i=1}^{\log n} i^{3.5} = \Theta((\log n)^{4.5})$

The recurrence $T(n) = T(n/2) + 1$ has complexity $T(n) = \Theta(\log n)$.

$\log(n!) = \Theta(n \log n)$

If $f(n) = O(n)$, then $(f(n))^2 = O(n^2)$.