Fabian Rohlik
← all Quizzes
$n \log n \leq O(n^{1.5})$
$\sum_{i=1}^{\log n} i^{3.5} = \Theta((\log n)^{4.5})$
The recurrence $T(n) = T(n/2) + 1$ has complexity $T(n) = \Theta(\log n)$.
$\log(n!) = \Theta(n \log n)$
If $f(n) = O(n)$, then $(f(n))^2 = O(n^2)$.